数字化转型视域下技术创新人才培养: 诉求、困境与变革

姚岚 谭维智

【摘要】新一轮技术革命加快产业数字化、数字产业化进程。数字化转型催生大量新兴职业技术岗位,技术创新逐渐凸显知识聚合性、技术组合性、知识和技术应用的复杂性特征。为回应数字转型对技术创新人才的发展诉求,培养具有知识整合与建构能力、技术重混的实践技能以及应对复杂问题情境的技术创新人才,高等职业教育应改变以知识为目的的教学,搭建虚实结合的实践场域加强对学生实践能力的培养;打破单一学科知识体系束缚,引导学生在实践中构建网络化知识体系;创建多元主体参与的实践共同体,通过共同实践加快知识内化和转移;突破机械化、程序化操作的限度,通过系统化实践教学体系建构和实施岗位轮换,使学生深度参与企业生产实践,培养整体性、系统性思维,增强技术重组的实践操作能力,最终实现技术创新能力不断提升。

【关键词】数字化转型 技术创新 人才培养

随着以云计算、大数据、人工智能等技术为代 表的新一轮科技革命的迅猛发展,我国正进入数 字经济时代,数字化信息和知识成为关键性生产 要素,数字技术与实体经济深度融合,驱动经济 社会数字化、网络化、智能化水平不断提升。数字 技术与传统生产模式的深度融合使生产方式、生 产要素发生深刻变革,催生一批新兴产业和职业 岗位,对技术人才提出了新的时代要求。2022年 中央网信办等部门联合印发《2022年提升全民数 字素养与技能工作要点》,将"提升劳动者数字工 作能力和提高数字创新创业创造能力"作为重点 任务,提出"培育数字领域高水平大国工匠,培育 高水平数字人才"的工作目标。高等职业教育作 为技术创新人才培养的主阵地,肩负着为社会经 济发展变革提供智力支持和人才供给的社会责 任。技术变革、产业转型对人才需求状况的改变 直接影响着高等职业教育人才培养目标及能力结 构。同时,现代信息技术改变了知识存在的基本 形态,引起知识生产方式和手段的根本性变革,加 速教育的数字化转型。高等职业教育应如何回应 数字时代对技术人才的发展诉求,在知识、教育 "数字化"进程中,如何使"数字"赋能技术创新人 才培养,成为亟需我们探索和研究的时代课题。

一、数字化转型对技术创新人才培养的诉求 企业数字化转型引起工作任务、生产流程和 技术要素的根本性转变。工作任务由大规模、标 准化工业大生产转向满足个性化、多样化需求为 主要目标的专业化生产与服务;数字技术与传统 工业生产模式深度融合,使生产流程凸现复杂性、 系统性和动态发展性特征;数字化、网络化、智能 化成为产业转型升级的核心驱动力。数字化转型 对高等职业教育人才培养提出了新的时代诉求, 要培养具有知识整合与建构能力、掌握技术重混 的实践技能、能够创造性地解决复杂问题的技术 创新人才。

(一)技术创新的聚合性需要知识整合与建 构能力

数字化转型使"数"逐渐成为信息存在的主要形式,大量知识信息被分解为数据信息。互联网的普及加快信息数字化进程,不断增强信息的开放与共享,使人们唾手可得海量信息和资源,但也带来"信息垃圾"和"信息过剩"的流弊。要实现技术创新,首先便要过滤"信息垃圾",去除"过剩信息"。围绕人的目的和逻辑对信息进行筛选与整合,利用现代化信息技术把原本独立存在的数字资源和信息融聚在一起。信息以独立结点的形式

收稿日期: 2022-11-02

基金项目: 2021 年山东省社会科学规划培育项目"'提质培优'背景下高职院校专业建设发展研究"(21CPYJ64)

作者简介:姚岚,曲阜师范大学教育学院博士研究生,山东外国语职业技术大学外语学院副教授;谭维智,曲阜师范大学中国教育大数据研究院院长、教授、博士生导师。

存储在计算机当中,当人们为实现某种目的而将散落的、相关联的信息以某种逻辑进行计算、筛选、聚合的时候,才能给人们的行动或决策提供有效帮助。数字转型过程中的技术创新凸显知识聚合性特征,其实质是打破知识载体的限制,模糊知识边界,实现"不同载体、不同类型的数字资源之间的多维关联和聚合"。[1] 数字化信息和知识的聚合是技术创新的基础,"通过使用开放资源的方法来聚合分散的信息以及集合分散的创造力"[2],通过对信息的聚合达到改善决策,推动技术创新的目的。

技术创新的聚合性特征需要人们在解决实际 生产问题时,依据目的、方法、环境的差异采取不 同的整合策略,利用方法、手段或借助平台实现数 字资源重组和共享。拥有信息不等同于拥有智 慧,大量信息必将伴随更大的不确定性,而"软件 没有判断与斟酌处理的能力,这种能力是人类社 会化与经验的产物"。[3] 与纯粹的知识生产不同, 技术创新过程中的知识生产指向现实应用,遵照 的是一种"事实逻辑结构"。只有打破传统学科知 识陈规,突破学科知识边界,围绕现实问题"拿来" 各学科知识,并对其进行重新组合,才能更加有效 地回应现实需求,解决实际问题。[4] 围绕问题情境 构建"新知识"的过程是在新旧经验互动中"拉出" 想要的"比特"的过程。技术创新人才应具有较强 的知识整合能力,能够面对实际生产情境有效整 合相关知识。这些被整合在一起的知识相互融合 且彼此关联,共同为问题的解决发挥作用。

(二)技术创新的组合性需要技术重组的实 践技能

技术创新不是"无中生有",是在现有技术基础上通过对已有资源的重新组合,达到预期效果和目的。20世纪50年代以来,组合创新成为技术迭代的主要途径。人们通过同类组合、异类组合、重组组合等方式^[5],将具有多种特征的方法、工艺、现象等要素按照一定逻辑组合到一起,使其为实现特定目的共同发挥作用。数字化转型并非对传统技术方法、流程的彻底否定与抛弃,而是在原有技术基础上,融入人工智能、大数据、云计算等信息技术手段,使现代化信息技术与传统技术要素之间深度融合、重组。"以新的组合方式把旧的东西放到一起"^[6]成为技术创新的主要方式。

技术创新的组合性特征需要行为主体具备技术重组的实践技能。在生产过程中各生产要素依照程序规范,以特定的形式相互关联、共同作用,完成动态化的实然运行。行为主体与技术不断"交往"和"对话",依据不同的实践目标和现实情

境,审视已有技术及技术组合,通过不断实践、试错调整技术和流程的组合方式,用不同的方法做同样的事情,以最低投入达到最大收益。技术与技术之间存在一种"协同关系"。单体技术本身及单体技术在"域"中的作用和价值,能够将复杂技术进行分解,也能够将分解的单体技术进行有效地重新组合。技术与技术组合形成的技术集群,既可以发挥各自优势,又可以实现互补,使技术集群的整体功能大于各部分功能之和,这就是技术组合创新的价值。但发挥这种价值的前提是技术的组合要经过全面周详的设计与管理,以达到1+1>2的整体功效。行为主体只有不断调试技术要素组合设计,实现技术重混的最佳方案,才能增强技术创新的适应性、引领性,从而实现技术的持续发展。

(三)技术创新的复杂性需要不断发展的经验性知识

数字化转型颠覆性地改变了传统产品和生产 流程的基本特征。个性化需求的快速升级增加了 产品本身的复杂性;大数据、人工智能等技术在生 产流程中的应用,增加了生产过程的复杂性。产 品和生产流程的复杂性增强了技术创新情境的复 杂性,从而导致一种可能的解决办法,可能仅仅暂 时依赖于其对特定应用情境所设定的需求的符合 程度。[7]技术创新情境的复杂性需要行为主体运 用前期积累的经验性知识,对复杂问题情境进行 分解和编码,对数据进行萃取及处理,从而设计形 成解决问题的方案。方案的形成也并非一劳永 逸,不能随意迁移应用于所有相似问题情境。在 解决同一问题的过程中,也会因要素变化而调整 策略和解决方案。"规则不断被设计、被实施,随 时接收反馈,然后不断调整、修正甚至重塑"。[8] 这 种规则的设计与调试隐藏在个人经验之中,是种 无法言说的实践智慧。因此,数字化转型过程中 技术创新要求行为主体"必须在认知上'构造'他 们面临的问题,即他们必须理解他们的问题,给他 们的问题赋予'意义',然后才能解决他们的问 题"。[9]在识别和解读创新情境时,行为主体在原 有经验性知识的基础上,通过参与实践获取"构 建"和"解读"问题情境的能力得到了强化。问题 确认和假设生成的过程都与行为主体拥有渊博的 知识基础和特定领域的专门经验有着紧密的联 系。[10]现代化信息技术的迭代更新和知识聚合的 动态发展,使技术创新者常常需要面对复杂的技 术应用和生产实践问题,他们需要采用一定的策 略,通过经验性知识的调试与发展,减少问题解决 的复杂性与认知之间的张力,实现技术创新。

二、数字化转型背景下技术创新人才培养的 现实困境

2020 年 9 月教育部等九部门印发《职业教育体制培优行动计划(2020-2023 年)》提出发展本科职业教育,培养高素质创新型技术技能人才的目标。技术创新人才不是掌握机械化操作流程的技术工人,而是能有效整合已有知识,掌握新工艺、新技术、新方法,创造性地解决实际问题,并在实践中不断发展和重构个人知识体系,具有较强技术应用和创新实践能力的技术人才。但目前,高等职业教育人才培养仍受传统教育教学束缚,人才供给难以满足数字转型对技术创新人才的需求

(一) 教学以知识本身为目的,忽视学生实践 能力的培养

知识只有在具体情境下,嵌入式地融入解决 问题的方案时,它才是有意义的。知识不应该被 "推给"学生,相反,学生应依据具体目的、语境,将 所需要的信息"拉出来",在信息的筛选、整合过程 中,主动建构知识。数字化转型改变了传统以书 籍、报纸等为载体的知识呈现形式,取而代之的是 廉价电子数据。教师和课本不再是学生获取知识 的唯一来源,但在现实的教学过程中,教师却极易 陷入一种固有价值取向,即"时刻准备着探索和传 授知识与思想"[11],极易将传授学科知识、发展学 科知识作为教育教学的主要内容和最终目标。然 而,技术创新人才是面向社会经济发展的"职业 人",需要具有较强的解决实际问题的能力,能将 已有的显性知识、程序化知识应用到具体生产实 践中。学生更加看重知识的"实际效益",他们迫 切地想要知道课堂所学知识究竟能做什么以及怎 样做的问题。"知识的要义就在于知识的运 用"。[12]技术创新人才的主要任务是知识的应用 与转化,是技术创新与发展。

倘若把知识本身视为一种目的,而忽略其作为实现其他目的的一种手段的话,学生只是通过大脑去接收观点,而不去应用、验证或与其他事物相关联,便极易陷入"惰性思维"[13],专业学习所获得的编码知识与工作场域获得的默会知识难以得到有效联结。仅仅依靠"客观的""普遍的""中立的"课程知识无法适应充满不确定性和复杂性的生产情境。技术创新人才的培养应建立于"文化建构、价值涉入和具有境域性"的课程知识基础之上,在不断变化的价值建构和意义阐释过程中实现某一特定目标的实践能力培养,而不是以事实发现和知识积累为目的。[14]

(二) 教学以单一学科知识为主,制约网络化

知识体系的构建

只掌握一种知识和经验的人在面对和解决实 际问题的时候,往往容易陷入一种知识惯性,习惯 性地采用原有知识结构作为指导,在已有学科知 识理论和经验中寻求解决问题的方法和路径。目 前,高等职业院校虽然在专业建设和教学改革实 践中进行了诸多研究和探索,努力对接产业和职 业岗位群人才需求,但人才培养过程仍具有明显 学科特征,以专业教研室为教学基本单位,延续和 发展学科知识的研究范式。课程设置呈现较为明 显的学科特征,课堂教学以单一学科知识体系为 主。尽管学校通过教学改革、课程改革等方式,探 索跨学科知识的融合发展,但不同学科仍以相对 独立的知识体系存在,关联性较弱。这种模式下 所培养的人往往易受已有知识体系限制,难以从 多角度、多维度探索解决实际问题的方法,甚至抵 触或拒绝创新行为的发生。长时间受单一学科知 识的影响,人们往往会表现出其学科独特性,而与 其他学科领域划清"界限"。这种单一学科知识体 系在某种程度上对知识创新能力提升起反向作 用。高等职业教育要解决的是社会化问题,其知 识生产更加凸显社会性特征。面对日益复杂的生 产和技术,这种强调单一学科知识特征,过度依赖 单一学科知识结构解决问题的能力也无法满足现 实的需要。技术创新人才更需一种开放、融合、发 展的知识观,围绕职业岗位能力需求,构建多学科 知识融合的网络化知识体系,只有这样才有可能 灵活应对复杂、多样的生产实践问题,担负起技术 创新的使命。

(三)实践以程序化操作为主,限制学生解决 复杂问题的能力

高等职业教育虽已对实践教学环节作出明确 规定,提出提升实践教学比例的要求,但实践的形 式和内容停留于固定流程或单一技术操作,难以 形成对整个流程或整体技术的系统化认知。每个 技术流程都由若干子系统构成,每个技术又会成 为其他技术的组成部分。实践若只停留在某个子 系统或单一技术的实践操作过程,便极易忽略部 分与整体、部分与部分之间的联系,限制整体性、 系统化思维模式的建立。这种模式培养的学生虽 然也具有了一定的实践能力,但往往限于对流程 或技术简单、机械化的操控,无法理解和获取解释 技术现象的程序化知识。使用技术的现象与特定 "知识"间的关联之所以被忽视,是因为在技术应 用过程中,使用者被"消散"了。[15]人不是机器,人 也不能等同于机器。人有思想,有实践的逻辑和 思考。我们应该关照的是实践过程中人的主体性 的发挥,是人思维方式的形成,机械化的实践训练恰恰忽略了人作为实践主体存在的独立性。若高等职业教育的人才培养未能将人才培养置于真实的职业世界,使基础知识技能与思维、经验相分离[16],只停留于基本流程或单体技术的机械化操作,将阻碍学生对技术本质及其规律的认知,限制学生创新思维和创新实践能力的发展。

三、数字化转型背景下技术创新人才培养的 变革之路

社会的数字化转型,打破原有职业边界与技术边界^[17],传统职业岗位不断被新兴的、知识密集型产业和职业所取代。高等职业教育只有突破传统人才培养模式的束缚,使数字技术赋能人才培养,将技术人才培养置于真实的职业世界和生产全过程,才能培养数字转型时期社会经济发展所需要的技术创新人才。

(一) 创建虚实结合的实践场域,实现学生基础知识与实践能力融合发展

利用互联网、计算机虚拟技术等手段,创建结 构化实践场域,将抽象的概念物化,将复杂的内在 关联外化,为学生的结构化认知提供更多弹性和 机会,使他们以新的方式探索、获取知识。知识不 仅存在于信息中,还存在于使人们正确理解和使 用信息的实践中。[18]学习本身就是社会活动的组 成部分,高等职业教育培养学生掌握技术技能,使 其创造性地开展生产实践活动,这种技术创新能 力的培养离不开实践场域。学生作为行为主体, 在与作为客体的各生产要素之间持续互动过程 中,完成知识建构和技术技能提升。教师在课堂 上讲授的知识,学生从课本上学到的知识,都是基 于以往实践活动,归纳、外显而形成的普遍性知 识,这类知识并非一把万能钥匙,无法解锁所有的 现实问题,它也只能在个别情况中起作用,即规则 所承载的共性不可能适用于与它相关联的一切情 境。[19] 学习的目的是为了让学生获取一种解决实 际问题的方法和能力,正如运用数学知识计算行 程问题,运用地理知识判断路况和方位一样。职 业教育的关键在于"将知识在学科体系中的存储 性结构还原为行动体系中的应用性结构"。[20]因 此,课堂教学应突破传统教学场域的限制,发挥互 联网和信息技术优势,创建虚实结合的工作场域, 为学生搭建更多实践平台,促使学生在实践中完 成知识转化与建构,实现理论与实践融合发展,实 现知识获取与知识应用、知识内化与知识外显的 双向互动,促使学生能够将普遍性知识与具体情 境下的实际问题进行有效调试,从而增强知识在 解决问题过程中的有效性,实现学生专业知识和

实践能力的融合发展。

(二)创设真实生产流程的数字化情境,帮助 学生构建"重混"的知识体系

"与实际生产实践相分离的教学场景往往容 易将学生管理学习情境的能力同实施技能的能力 分离开来"。[21] 要解决工作过程中日益复杂的生 产实践问题,围绕专业构建的线性知识结构无法 满足多样化问题情境的需求。高等职业教育应以 生产流程或问题情境为依托,利用数字孪生、元宇 宙等现代化信息技术手段,创设逼近真实生产流 程和技术应用的数字化情境,围绕项目或创新目 标构建网络化、结构化知识体系。引导学生实现 多学科知识的融合发展。这种知识网络的构建不 是学科知识之间或专业知识与行业知识的简单叠 加,而是在实践过程中以"问题"为根本出发点,以 "解决问题"为最终目标,以满足利益相关者诉求 为基本原则,引导和启发学生逐步整合与构建的 结构化知识体系。"问题是创新的起点,也是创 新的动力源"。[22]以"问题"为连结,使不同领域、 不同学科知识相互关联。在解决实际问题的过程 中,不同学科知识相互依存、相互制约,为实现"最 终目标"共同发挥作用。帮助学生构建"重混"的 知识体系是高等职业教育人才培养的关键,更是 社会发展的现实需要。"重混"所带来的世界是开 放的、进化的,表现出无法从某个部分预测未来的 涌现性质,带有连通性、适应性、有机性以及凌乱 的生命力。[23]专业课程设置过窄会影响学生职业 发展的适应性,因此需要系统地整合构建专业类 课程与职业类课程知识体系,深度融合不同类型 的知识和技术,培养学生多视角思考问题的能力。 高等职业教育知识体系的建构应该在类型上实现 专业知识与职业技能、过程性知识与程序化知识、 显性知识与隐性知识混合建构,在知识内容上促 进去学科化知识体系的融合,突破线性知识的限 度,创建结构化知识体系。只有这样才能使学生 超越具体生产情境,实现知识的有效整合与应用, 避免"只关注与知识获取和生产过程相关的利益 或实践",将知识"划约或等同为特定知识群体的 利益或实践",造成知识决策上的武断。[24]构建 "重混"知识体系是有效应对知识的复杂性、社会 性生产实践的必要前提。

(三)设计基于生产全过程的实践教学体系, 促进学生组合创新实践能力的提升

数字化转型使各生产要素、生产流程紧密关联。某一单体技术的修正或生产流程的调适都会引起与其相关联的其他技术要素、生产流程发生相应的改变。技术创新人才不是要研究"知识是

什么"和"为什么"的问题,而是要解决实际情境下 "怎么办"的问题;不是要胜任机械化操控生产和 技术流程的工作,而是能够创新生产实践的技术 或流程。技术创新与技术应用成为其创新能力的 重要体现。技术是一种行事的方式[25],"是有序 的生产手段的集合"。[26] 技术创新的主要方法并 不是从无到有,从"0"到"1"的创造发明,而是重新 排列组合,"以新的组合方式把旧的东西放到一 起"。[27] 技术重组、组合创新是现代技术变革的主 要方式,影响着技术技能人才以何种方式参与和 变革生产实践。掌握组合创新的方法,实现技术 创新的前提,是让学生深入生产流程,以整体性、 全局性视阈来理解技术、解释技术。高等职业教 育应为学生提供更多机会深入生产实践全过程。 无论是课堂内的实践教学还是课堂外的顶岗实 习,都不能让实践停留在单一技术或早已固化的 生产流程浅表,应通过不定期岗位轮换让学生深 刻体验和认识技术各要素以及流程各环节之间的 内在联系,培养学生整体性、系统性思维。"组合 在创造价值方面必须作为一个整体运作"。[28]也 就是说在面对问题情境和解决现实困难的过程 中,无论是重新整合的知识体系还是重组的技术 群都要作为一个整体来发挥作用。要准确把握其 内在关联,系统优化知识和技术布局,发挥整体最 大价值。技术是为实现某种目的而形成的一系列 规则的集合。[29] 当目的发生改变时,对技术组合 的要求也随之发生变化。单体技术具有一定的局 限性和负面效应,因此,实践过程中为实现某一特 定目的往往需要整合多个技术,通过对技术组合 来减少单一技术带来的负面效应,最大限度地发 挥技术优势。技术重组使新的技术集合的作用大 于原有技术组合,且大于运用单一技术在问题解 决过程中的作用,达到 1+1>2 的整体目标。只 有具备了这种系统思维和全局意识,技术创新者 才能更好地协调技术要素和社会要素,不断优化 和重组技术路线,实现技术创新。

(四)组建多元主体参与的实践共同体,加快 学生经验性知识的积累

技术创新人才的培养关键是在实践过程中帮助学生通过知识的内化、转化与建构,形成基于实践的经验性知识。这是提升学生创新能力的基础,也是学生实施创新行动的持续动力。教师与学生不再是单向输出知识与被动接受知识的关系,而逐渐发展成为共同探究、相互协作的实践共同体、学习共同体。师生在围绕项目、创新目标开展的具体实践过程中,通过持续对话、交流与互动,加快个体经验和知识的流动,最终达成共识。

技术创新人才培养应以共同实践为基础,实现学 生经验性知识积累与教师实践性知识转移。同 时,改变传统的以学科为单位的教研室建制,组建 以职业岗位群为基础的职业教研室,围绕职业岗 位或岗位群对人才能力的需求状况,整合不同学 科、不同专业、不同实践经历的相关人员组成人才 培养的育人主体。基于项目组建"虚拟教研室", 可以是临时的,动态发展的实践共同体,为满足一 定时期或特定项目而临时组建的知识创新实践团 队。一旦现实问题得到解决或是被重新定义时, 团队成员随即解散;而后围绕新的问题,成员们又 被重新分配,组成新的团队。虽然这种组织是暂 时的,但成员及组织之间的沟通与联系将会以网 络状结构呈指数级增长。通过这样正式与非正 式、线上与线下相结合的实践共同体,融合不同学 科、不同领域知识生产者的价值取向、文化特征等 要素,逐步消融人才培养过程中学校与社会、学校 与企业之间的知识边界,增强二者之间知识生产 的适配性。在共同实践过程中,作为专家的经验 性知识得到转移,促进学生经验性知识的生成与 发展。

四、结语

技术创新是一个渐进的过程,一个迭代更新的过程,几乎没有真正的"尤里卡时刻"。创新行动的发生是行为主体知识、技术和经验共同作用的结果。数字化转型背景下技术创新日趋常态化。一次创新既是一个阶段的终点,也是下一次创新行动的起点。创新同样具有两面性,在带来一定效益的同时,也会产生负面效应。我们不能期待某一次的技术创新便能解决所有问题,也不能因为其存在负面效应而拒绝创新,顽固守旧。技术创新者应该以开放、包容的心态面对实际问题,以跨界融合的视阈来审视现实情境,通过系统化设计、重组与管理限制负面效应,发挥技术群及生产流程的最大价值。

参 考 文 献

- [1] 王传清,毕强. 超网络视域下的数字资源深度聚合研究[J]. 情报学报,2015(1):4-13.
- [2] 凯斯·R·桑斯坦. 信息乌托邦[M]. 毕竟悦,译. 北京:法律 出版社,2008:166.
- [3][18] 约翰·希利·布朗,保罗·杜奎德.信息的社会层面 [M].王铁生,葛立成,译.北京:商务印书馆,2013;53,129.
- [4] 张乾友. 个人知识、专业知识与社会知识[J]. 自然辩证法通讯,2017(1):100-109.
- [5] 田申. 理工学校创新教育读本[M]. 北京: 机械工业出版社, 2018,163
- [6][27] 马特·里德利. 创新的起源[M]. 王大鹏,张智慧,译. 北

京:北京师范大学出版社,2017:168.

- [7] 迈克尔·吉本斯,卡米耶·利摩日,黑尔佳·诺沃提尼,等. 知识生产的新模式当代社会科学与研究的动力学[M]. 陈洪捷,沈文钦,译. 北京:北京大学出版社,2011:5.
- [8] 刘永谋. 技术的反叛[M]. 北京:北京大学出版社,2021:143.
- [9] 布莱恩·阿瑟. 复杂经济学[M]. 贾拥民,译. 杭州:浙江人民出版,2018;149.
- [10] 舒尔曼. 实践智慧[M]. 王艳玲, 王凯, 译. 上海: 华东师范大学出版社, 2013, 174.
- [11] 德雷克·博克. 回归大学之道[M]. 侯定凯,梁爽,陈琼琼, 译. 上海:华东师范大学出版社,2006:25.
- [12][13] 怀特海. 教育的目的[M]. 靳玉乐,刘富利,译. 北京:中国轻工业出版社,2016:38,2.
- [14] 石中英. 知识转型教育改革[M]. 北京:教育科学出版社, 2013.169.
- [15] 唐·伊德. 技术与生活世界[M]. 韩连庆,译. 北京:北京大学出版社,2012;36.
- [16][17] 顾建军. 高素质技术技能人才培养的现代意蕴与职业

- 教育调适[J]. 国家教育行政学院学报,2021(5):20-25,32.
- [19][21] J•莱夫,E•温格. 情景学习:合法的边缘性参与[M]. 王文静,译. 上海:华东师范大学,2014;4,7.
- [20] 姜大源. 职业教育要义[M]. 北京:北京师范大学出版社, 2017:121.
- [22] 习近平. 在哲学社会科学工作座谈会上的讲话[M]. 北京: 人民出版社,2016:14.
- [23] 卢晓东. "重混": 颠覆性技术创新视野中的新工科[J]. 中国高教研究, 2021(7): 20-28.
- [24] 迈克尔·扬. 把知识带回来[M]. 朱旭东,文雯,许甜,译. 北京:教育科学出版社,2019:183.
- [25] 厄休拉·M·富兰克林. 技术的真相[M]. 田奥,译. 南京:南京大学出版社,2019:15.
- [26][29] 王佳昕,潘海生,郄海霞.技术论视域下职教本科定位 与人才培养逻辑[J].高等工程教育研究,2021(5):141-146.
- [28] 本杰明·戈梅斯-卡塞雷斯. 重混战略 融合内外部资源共创新价值[M]. 徐飞,宋波,任政亮,译. 北京:中国人民大学出版社,2017:17.

Cultivation of Technological Innovation Talents in the Context of Digital Transformation: Demands, Difficulties and Changes

Yao Lan, Tan Weizhi

Abstract: A new round of technological revolution accelerates the development of industrial digitalization and digital industrialization. With the digital transformation, technology iteration and industrial transformation have given birth to a large number of new vocational and technical posts. The technological innovation has gradually highlighted the features of knowledge aggregation, technology combination and complexity of applying situation. In order to cultivate the students with the ability of knowledge integration and construction, the practical skills of technology remixing, and the ability to deal with complex situations to respond to the demand of digital transformation for the technological innovation talents, higher vocational education should change the teaching aim of imparting knowledge only, strengthen the cultivation of students' practical ability through the practice fields of virtual and real; it should shake off the fetters of a single disciplinary knowledge system and guide students to build a networked knowledge system in practice; it should build a community of practice with the participation of multiple subjects to accelerate the internalization of theoretical knowledge and the transfer of practical knowledge through common praxis; it should break through the limit of mechanized and procedural operation by the construction of systematic practical teaching system and job-rotation, and make students deeply participate in enterprise production practice, cultivating the students' ability to think holistically and systematically and enhancing their practical ability of technology reorganization. Finally we can achieve the goal of enhancing the students' ability of technological innovation.

Key words: digital transformation; technological innovation; talent cultivation (责任编辑 任令涛)